# دراسة آلية الارتباط في مركبات البور الثنائية التي تتبلور وفق النموذج البنيوي AIB2

د. عاصم أصلان <sup>\*</sup> كنده محمود <sup>\*\*</sup>

(تاريخ الإيداع 22 / 12 / 2015. قُبِل للنشر في 13 / 7 /2017)

## □ ملخّص □

تهدف الدراسة الحالية على نحوٍ رئيس إلى تفسير الارتباط في صف كبير من المركبات المعدنية لعنصر البور، التي تتبلور على هيئة النموذج البنيوي AlB2 وفق المفاهيم الحديثة.

وقد اعتمدنا أسلوب المناقشة والتحليل في دراسة نوعية وآلية الارتباط الكائن في النموذج البنيوي  $AIB_2$  ، بعيداً عن المفاهيم التقليدية التي كانت في كثير من الأحيان عاجزةً عن تفسير الارتباط في هذه المركبات.

ويمكن للنتائج التي توصلنا إليها أن تكون ذات فائدة علمية ومرجعية ، إذ يمكن الاعتماد عليها كأساس في دراسة النماذج البنيوية المشابهة وتفسير الارتباط الكائن فيها.

الكلمات المفتاحية : النموذج البنيوي AIB2 ، مركبات البور المعدنية

<sup>\*</sup> أستاذ في قسم الكيمياء ،كلية العلوم ، جامعه تشرين ،سورية.

<sup>\*</sup> طالبة ماجستير ،قسم الكيمياء،كلية العلوم ، جامعه تشرين ،سورية.

# Study of mechanisms bonding in the binary boron compounds crystallized in structural type AlB2

Dr. Asem Aslan\* Kinda Mahmoud\*\*

(Received 22 / 2 / 2015. Accepted 13 / 7 /2017)

#### $\square$ ABSTRACT $\square$

The present study aims primarily to interprete the correlation in a large array of metal compounds of Boron element, We have adopted the method of discussion and analysis in the study of the quality and correlation mechanism of the structural model  $AlB_2$ , Away from traditional concepts that were often unable to explain the bonding in these compounds .

The results can be useful scientific and reference; We can rely on them as a basis for studying similar structural models and explain the bonding in them.

**Keywords**: Boron compounds , AlB<sub>2</sub>-type diborides

<sup>\*</sup>Professor, Chemistry Department, Faculty of Science, Tishreen University, Syria.
\*\*Postgraduate Student Chemistry Department, Faculty of Science, Tishreen University, Syria

#### مقدمة:

تحتل مركبات البور مكانة فريدة في مجال الدراسة ؛ لما تتمتع به من خواص هامة ، كالناقلية الحرارية والصلابة العالية . فالبلورات العنصرية للبور تأتي في المرتبة الثانية في الصلابة بعد الماس. توفر قدرة البور على الارتباط مع باقي العناصر مجموعة واسعة من المواد الصلبة المتنوعة. وتجدر الإشارة إلى أن الدراسات التي تناولت الخصائص العازلة والناقلية الفائقة للمركبات المعدنية للبور أحدثت ثورة في عالم الأبحاث في الآونة الأخيرة. [1]

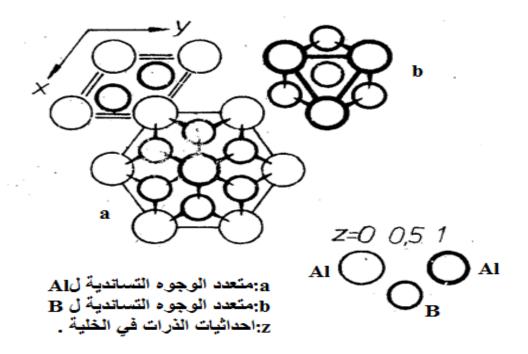
## أهمية البحث وأهدافه:

إن تحديد نوع الارتباط في أي نموذج بنيوي لا يقل أهمية عن تحديد الأجزاء التي يتألف منها هذا النموذج ؛ لأن معالجة نوع القوى التي تربط أجزاء البنية البلورية بعضها ببعض يعطي تصورات واضحة عن تماسك البنية البلورية و الصلابة و خواص الناقلية الكهربائية . يعتمد نوع القوى التي تربط الذرات في اي نموذج بلوري على المسافة بين الذرات ؛ معطيات الأبعاد بين الذرات وطريقة توضعها في النموذج البنيوي تقدم تصوراً واضحاً عن قوة الارتباط وتساعد في تفسير الخواص الفيزيائية والكيميائية للمركبات.

وجدنا من خلال دراسة المركبات المعدنية للبور مجموعة من المشاكل التي تتعلق بهذه المركبات ومن هذه المشاكل:

- صعوبة فهم آليات الارتباط في هذه المركبات.
- غياب الدراسة المتكاملة للارتباط في جميع مركبات البور.
- إبراز أهمية هذه المركبات من الناحية التطبيقية ، فهي تعد مجالاً خصباً للدراسة والبحث.

## طرائق البحث ومواده:


اعتمدنا في طريقة العمل على تصنيف المركبات المعدنية الثنائية لعنصر البور، التي يشكلها مع عناصر الجدول الدوري وفقا للنموذج البنيوي AlB<sub>2</sub>. ومن ثم قمنا بتوضيح الأبعاد بين الذرات وحساب النسبة المئوية للتقلص أو الازدياد في هذه الأبعاد بناء على العلاقتين الرياضيتين المشار إليهما في الصفحة التالية .

كما قمنا بمقارنة هذه الأبعاد مع أنصاف الأقطار الذرية، وحاولنا استتاج العلاقة بينهما، كما ربطنا بين الخصائص البنيوية والخصائص الفيزيائية لهذه المركبات بهدف وضع تصور واضح عن نوع الارتباط في هذه المركبات.

# النتائج والمناقشة:

يتبلور وفق النموذج البنيوي AlB<sub>2</sub> اثنان وعشرون مركباً ، كما هو معلوم [2] ، وهذه المركبات هي: MgB<sub>2</sub>,ScB<sub>2</sub>, YB<sub>2</sub>,GdB<sub>2</sub>,DyB<sub>2</sub>,HoB<sub>2</sub>,ErB<sub>2</sub>,TmB<sub>2</sub>,YbB<sub>2</sub>, LuB<sub>2</sub>, UB<sub>2</sub>, PuB<sub>2</sub>, TiB<sub>2</sub>, ZrB<sub>2</sub>, HfB<sub>2</sub>, VB<sub>2</sub>,NbB<sub>2</sub>,TaB<sub>2</sub>,CrB<sub>4</sub>,MoB<sub>2</sub>, MnB<sub>2</sub>,AlB<sub>2</sub>

يبين الشكل (1) مسقط الخلية البلورية العنصرية للنموذج البنيوي  $AlB_2$  على المستوي XY ومتعددات الوجوه التساندية لكل من  $AlB_2$  و  $AlB_3$  التساندية لكل من  $AlB_3$  و  $AlB_3$  التساندية لكل من  $AlB_4$  و  $AlB_5$  التساندية لكل من  $AlB_5$  التساندية لكل



الشكل (1) مسقط الخلية البلورية العنصرية للنموذج البنيوي AIB2

إن بنية المركب AlB<sub>2</sub> لها شكل طبقي ، وهي تشبه بنية الغرافيت ؛ حيث تتناوب الطبقات السداسية لذرات البور مع الطبقات السداسية للألمنيوم وفق الترتيب ABAB .

يتضمن الجدول (1) قيم نصف قطر ذرة المعدن  $r_M$  فضلا عن كهرسلبية المعدن ، وحسابات النقلص و الازدياد في الأبعاد وتظهر في الجدول (2) مركبات البور التي تتبلور وفق النموذج البنيوي a,c وأطوال أضلاع الخلية البلورية a,c وفق القيم المعتمدة في المرجع [3] .

تم حساب قيم الأبعاد بين ذرات البور ДВ-В من العلاقة:

$$d_{B-B} = \frac{a\sqrt{3}}{3}$$

أما قيم الأبعاد بين ذرة المعدن والبور Дм-в فحسبت من العلاقة:

$$d_{M-B} = \sqrt{\frac{a^2}{3} + \frac{c^2}{4}}$$

حيث : d<sub>B-B</sub> البعد بين ذرتي البور.

البعد بين ذرة المعدن والبور.  $d_{M-B}$ 

a,c أضلاع الخلية البلورية.

وقد أخذت قيم كل من a,c من المرجع [3] وأما قيم التقلص أو الازدياد في الأبعاد d<sub>B-B</sub> و d<sub>M-B</sub> فقد تم حسابها باستخدام العلاقتين:

النقاص 
$$= \frac{(r_A + r_B) - d_{A-B}}{r_A + r_B} * 100$$
  $= \frac{d_{A-B} - (r_A + r_B)}{r_A + r_B} * 100$ 

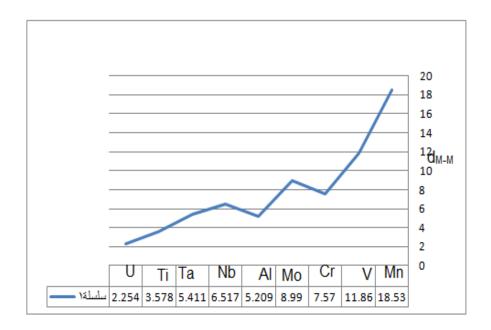
حيث :  $r_{M}$  يمثل  $r_{M}$  نصف قطر ذرة المعدن في بحثنا الحالي .

يمثل نصف قطر ذرة البور في بحثنا الحالي.  $r_{\text{B}}$ 

و الجدير ذكره أن قيم كل من r<sub>B</sub> و r<sub>B</sub> أخذت من المرجع [5].

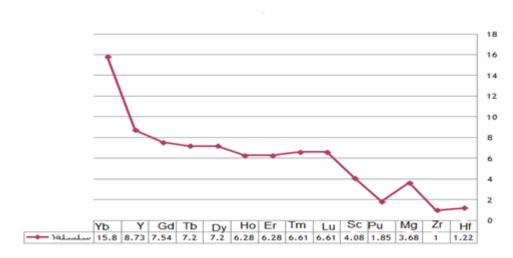
إن الدراسات حول انتقال الشحنه في المركبات التي تتبلور وفق النموذج البنيوي  $AlB_2$  متناقضة إذ يذكر في  $B_2$  (1.7) الكترون من ذرة البور  $B_3$  الله المعدن كما في المعدن كما في المركبات  $B_3$  (1.7) الكترون من ذرة البور  $B_3$  المعدن كما في المعدن كما في المركبات  $B_3$  البور في هذا تقسيراً مناسباً لفهم الصفة الكهربائية لهذه المركبات  $B_3$  ، مع أنه يتناقض مع الارتباط القوي بين ذرات البور في الطبقة الواحدة في حين أن انتقال الشحنه حسب  $B_3$  يتم من المعدن الى البور مع امتلاك المعدن شحنة ( $B_3$  والبور ( $B_3$  ).

 $r_{M}+r_{B}$  و  $2r_{B}$  و  $d_{M-M}$  و  $d_{M-M}$  و  $d_{M-B}$  و  $d_{B-B}$  و


الجدول(1) حسابات التقلص والازدياد والمقارنة بينها وبين نصف قطر ذرة المعدن ٢٨ وكهرسلبية المعدن

|        | نصف                  | 4                  | d <sub>B-B%</sub> | 2r <sub>M</sub> | 9 -49-9    | d <sub>M-M</sub> | 1                 | تقلص                      |
|--------|----------------------|--------------------|-------------------|-----------------|------------|------------------|-------------------|---------------------------|
| العنصر |                      | d <sub>B-B</sub> % |                   |                 | الكهرسلبية |                  | ازدیاد<br>م       | تعنص<br>d <sub>M-M%</sub> |
|        | القطر r <sub>M</sub> | تقلص               | ازدیاد            |                 |            |                  | d <sub>M-M%</sub> | a <sub>M-M</sub> %        |
| Mn     | 1.3                  | 4.63               |                   | 2.6             | 1.55       | 3.082            | 18.53             |                           |
| V      | 1.34                 | 4.95               |                   | 2.68            | 1.63       | 2.998            | 11.86             |                           |
| Cr     | 1.38                 | 5.43               |                   | 2.76            | 1.66       | 2.969            | 7.57              |                           |
| Мо     | 1.39                 | 3.62               |                   | 2.78            | 1.16       | 3.03             | 8.99              |                           |
| AL     | 1.43                 | 4.65               |                   | 2.86            | 1.61       | 3.009            | 5.20              |                           |
| Nb     | 1.45                 |                    | 3.19              | 2.9             | 1.6        | 3.089            | 6.51              |                           |
| Та     | 1.46                 | 2.4                |                   | 2.92            | 1.5        | 3.078            | 5.41              |                           |
| Ti     | 1.46                 | 4.12               |                   | 2.92            | 1.54       | 3.024            | 3.578             |                           |
| U      | 1.53                 | 0.42               |                   | 3.06            | 1.38       | 3.129            | 2.254             |                           |
| Hf     | 1.59                 | 0.42               |                   | 3.18            | 1.3        | 3.141            |                   | 1.22                      |
| Zr     | 1.60                 |                    | 0.45              | 3.2             | 1.33       | 3.168            |                   | 1                         |
| Mg     | 1.60                 | 2.25               |                   | 3.2             | 1.31       | 3.082            |                   | 3.68                      |
| Pu     | 1.62                 |                    | 0.81              | 3.24            | 1.28       | 3.18             |                   | 1.85                      |
| Sc     | 1.64                 | 0.27               |                   | 3.28            | 1.36       | 3.146            |                   | 4.08                      |
| Lu     | 1.74                 |                    | 3.01              | 3.48            | 1.27       | 3.246            |                   | 6.61                      |
| Tm     | 1.74                 |                    | 3.02              | 3.48            | 1.25       | 3. 25            |                   | 6.61                      |
| Er     | 1.75                 |                    | 4.12              | 3.5             | 1.24       | 3.28             |                   | 6.28                      |
| Но     | 1.76                 |                    | 4.12              | 3.52            | 1.23       | 3.281            |                   | 6.28                      |
| Dy     | 1.77                 |                    | 4.12              | 3.54            | 1.22       | 3.285            |                   | 7.2                       |
| Tb     | 1.77                 |                    | 3.846             | 3.54            | 1.20       | 3.28             |                   | 7.2                       |
| Gd     | 1.79                 |                    | 4.93              | 3.58            | 1.20       | 3.31             |                   | 7.54                      |
| Υ      | 1.81                 |                    | 4.72              | 3.62            | 1.22       | 3.304            |                   | 8.73                      |
| Yb     | 1.93                 |                    | 3.02              | 3.86            | 1.1        | 3.225            |                   | 15.8                      |

 $AIB_2$  البحدول (2) مركبات البور التي تتبلور وفق النموذج البنيوي  $AIB_2$  وأطوال أضلاع الخلية البلورية وحسابات التقلص والازدياد مقدرةً بالأنغستروم  $(A^0)$ .


| المركب           | a <sub>(A</sub> ') | C <sub>(A</sub> ') | d <sub>B-B</sub> | d <sub>B-B%</sub> | d <sub>B-B%</sub> | d <sub>M-B</sub> | r <sub>M</sub> +r <sub>B</sub> | d <sub>M-B%</sub> | d <sub>M-B%</sub> |
|------------------|--------------------|--------------------|------------------|-------------------|-------------------|------------------|--------------------------------|-------------------|-------------------|
|                  |                    |                    |                  | التقلص            | الازدياد          |                  |                                | التقلص            | الازدياد          |
| $MgB_2$          | 3.082              | 3.521              | 1.779            | 2.25              |                   | 2.504            | 2.51                           | 0.25              |                   |
| ScB <sub>2</sub> | 3.146              | 3.517              | 1.815            | 0.27              |                   | 2.528            | 2.55                           | 0.85              |                   |
| YB <sub>2</sub>  | 3.304              | 3.843              | 1.906            |                   | 4.72              | 2.708            | 2.72                           | 0.45              |                   |
| $GdB_2$          | 3.31               | 3.94               | 1.910            |                   | 4.93              | 2.75             | 2.7                            |                   | 1.65              |
| TbB <sub>2</sub> | 3.28               | 3.86               | 1.89             |                   | 3.846             | 2.703            | 2.68                           |                   | 0.85              |
| DyB <sub>2</sub> | 3.285              | 3.835              | 1.895            |                   | 4.12              | 2.697            | 2.68                           |                   | 0.63              |
| HOB <sub>2</sub> | 3.281              | 3.811              | 1.893            |                   | 4.12              | 2.687            | 2.67                           |                   | 0.629             |
| ErB <sub>2</sub> | 3.28               | 3.79               | 1.893            |                   | 4.12              | 2.679            | 2.66                           |                   | 0.729             |
| $TmB_2$          | 3.25               | 3.759              | 1.875            |                   | 3.02              | 2.649            | 2.65                           | 0.049             |                   |
| YbB <sub>2</sub> | 3.25               | 3.735              | 1.875            |                   | 3.02              | 2.647            | 2.84                           | 6.78              |                   |
| LuB <sub>2</sub> | 3.246              | 3.704              | 1.873            |                   | 3.01              | 2.635            | 2.65                           | 0.577             |                   |
| $UB_2$           | 3.129              | 3.989              | 1.806            | 0.79              |                   | 2.691            | 2.44                           |                   | 10.28             |
| PuB <sub>2</sub> | 3.18               | 3.90               | 1.834            |                   | 0.81              | 2.678            | 2.53                           |                   | 5.849             |
| TiB <sub>2</sub> | 3.024              | 3.233              | 1.745            | 4.12              |                   | 2.379            | 2.37                           |                   | 0.396             |
| ZrB <sub>2</sub> | 3.168              | 3.529              | 1.828            |                   | 0.45              | 2.542            | 2.51                           |                   | 1.258             |
| HfB <sub>2</sub> | 3.141              | 3.42               | 1.812            | 0.42              |                   | 2.509            | 2.50                           |                   | 0.388             |
| UB <sub>2</sub>  | 2.998              | 3.057              | 1.729            | 4.95              |                   | 2.309            | 2.25.                          |                   | 2.622             |
| NbB <sub>2</sub> | 3.089              | 3.303              | 1.878            |                   | 3.19              | 2.43             | 2.36                           |                   | 2.9               |
| TaB <sub>2</sub> | 3.078              | 3.265              | 1.776            | 2.4               |                   | 2.413            | 2.37                           |                   | 1.817             |
| MoB <sub>2</sub> | 3.03               | 3.12               | 1.754            | 3.62              |                   | 2.342            | 2.30                           |                   | 1.143             |
| $MnB_2$          | 3.008              | 3.034              | 1.735            | 4.63              |                   | 2.306            | 2.21                           |                   | 4.343             |
| CrB <sub>2</sub> | 2.969              | 3.066              | 1.713            | 5.43              |                   | 2.299            | 2.29                           |                   | 0.21              |
| AIB <sub>2</sub> | 3.009              | 3.262              | 1.736            | 4.65              |                   | 2.383            | 2.34                           |                   | 1.829             |

، في حين نجد أن قيم البعد بين ذرات المعدن  $d_{M-M}$  يتناقص بازدياد نصف قطر الذرة M في هذه المركبات كما يظهر في الشكل (2) .



الشكل (2): التغير في البعد طسه مع ازدياد نصف القطر الذري للمعدن

ويلاحظ زيادة في قيم التقلص للبعد  $d_{M-M}$  بالمقارنة مع  $2r_M$  عند بلوغ نصف قطر ذرة المعدن M القيمة ويلاحظ زيادة في قيم التقلص للبعد  $d_{M-M}$  ، إذ تكون الأبعاد  $d_{M-M}$  أصغر من  $2r_M$  وهذا ما يظهره الشكل (3) المبين أدناه :



الشكل (3):التغير في البعد ممال بازدياد نصف القطر الذري للمعدن

ويظهر من الجدول (2) أن التقلص أو الازدياد في القيم للبعد بين ذرة المعدن والبور  $d_{M-B}$  بالمقارنة مع مجموع أنصاف الأقطار  $r_M+r_B$  ضئيل جداً.

ولكنه لا  $d_{B-B} > 2r_B$  وتجدر الإِشارة الى أنَ انتقال الشحنة من المعدن M إلى البور B ولكنه لا يتوافق مع كون  $d_{B-B} > 2r_B$  ولكنه لا يتوافق مع كون  $d_{B-M} < 2r_M$  .

ووفقاً للمرجع [9] يلاحظ أن  $MgB_2$  ينفرد بناقلية كهربائية فائقة وثمة اختلاف في تفسير آلية الارتباط للمركب  $MgB_2$  عن آلية انتقال الشحنة بين المعدن والبور المبينة أعلاه ؛ فالارتباط بين المعدن والبور في المركب  $MgB_2$  (ومثيلاته من المركبات ) لا يترافق بانتقال الشحنة بينهما بل بتشكل الروابط  $\pi$  غير المتمركزة .

وتتأكد وجهة النظر هذه من خلال الملاحظات التالية:

- 1 تخفق اللانثانيدات الخفيفه من Ce → Ce التي تتصف بالكهرجابية العالية (أعلى من اللانثانيدات الثقيلة للعناصر الثقيلة في تشكيل النموذج البنيوي AlB<sub>2</sub>.
- 2- البنية شبه الطبقية للمركبات المتبلورة وفق هذا النموذج البنيوي تؤدي الى عدم تأثير القوى الكهربائية الساكنة وغياب التساند الكروى بين المعدن والبور في هذه المركبات.
- U في جميع المركبات صغير جداً بشذوذ عنصري اليورانيوم  $d_{M-B}$  في جميع المركبات صغير جداً بشذوذ عنصري اليورانيوم والبلوتونيوم P كما يظهر في الجدول P .
- 4 الازدياد الضئيل في الأبعاد d<sub>B-B</sub> لا يتجاوز 4% الأمر الذي لا يتوافق مع انتقال الشحنة بشكل ملموس من المعدن الى البور
- $d_{M-M}$  أكبر من  $d_{M-M}$  ، ولكن هذا الازدياد يتناقص مع ازدياد نصف قطر المعدن من المنغنيز  $d_{M}$  إلى اليورانيوم  $d_{M}$  ، وعند الوصول الى عنصر الهافانيوم  $d_{M}$  تصبح الأبعاد بين الذرات أصغر من مجموع أنصاف الأقطار ، ويزداد هذا التناقص مع ازدياد نصف قطر المعدن وصولا إلى عنصر الإتربيوم  $d_{M}$  ، وهذا الأمر يدل على أن التغير في البعد  $d_{M-M}$  لايرتبط بالكهرسلبية وإنما بالعامل الفراغي فقط.
- $M^{2+}B_2^{2-}$  وفق آلية انتقال الشحنة من المعدن الى البور وتشكل المركب  $AlB_2^{2-}$  وفق آلية انتقال الشحنة من المعدن الى البور وتشكل المركبين  $YB_2$ ,  $ScB_2$  ؛ إذ لا يعرف عادة لهذين العنصرين إلا درجة الأكسدة الثلاثية .

#### الاستنتاجات والتوصيات:

#### الاستنتاجات:

توصلنا من خلال هذه الدراسة النظرية إلى تصور واضح عن طبيعة الارتباط في المركبات التي تنتمي إلى النموذج البنيوي  $AlB_2$  ، حيث توجد بين ذرات البور روابط مشتركة ، في حين ترتبط ذرات المعدن مع ذرات البور في هذه المركبات من خلال الروابط  $\pi$  غير المتمركزة .

#### التوصيات:

يمكن الاستفادة من هذا البحث في مجال الاصطناع اللاعضوي للمركبات المعدنية للبور.

### المراجع:

- [1] OGANOV1,2\*.A.R, CHEN3,4.J, GATTI5, MA6.Y, MA1,7.Y,. GLASS1.W, LIU8.Z, YU3.T, KURAKEVYCH9 .OO,SOLOZHENKO.V, *Ionic high-pressure form of elemental boron* Publisher: NPG; Nature; 10.1038/nature0773(2009)P-15
  - [2] Gallide-U.N Green. P.E., Gladechyckl, metalorzi, Moscow, (1989)p-64
  - [3].KYZMA.U.B -crystallochemi boredof-V.S.A.scola,lvive,(1983)p64.
- [4]ASEM MOHAMED ASLAN, the bonding in the binary intermetalli compounds crystallized in Natp structure type, Int.n.j of chem. Vol.10-No-1(2000)p-17-21
  - [5]Bokel.G.B, crystal chmy. Moscow.(1971) p285
- [6] VAJEESTON. P., RAVINDRAN .P, RAVII.C, AND ASOKAMANII.R, *Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides*, Physical Review B, Volume 63, 045115(2001)
- [7]POST. B -Boron, metallo-Boron compounds and Borans-Newyork, Interscience(1964)P-71
  - [8]Silner, A.H., COSSIDA.A.T, chem. Phys , Moscow, (1963) V-38 P.865-867
- [9] Belas K.D., , coexistence of covalent and metallic bonding in the boron intercalation superconductor  $MgB_2$ , Physical Review.B-64,092503-(2001).