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O ABSTRACTO

Histone Deacetylase 2 (HDAC2) plays an important role in various dangerous disease
pathologies such as cancer, and was recently shown to be a desirable target for selective
inhibition, thus multiple studies were conducted in an effort to develop potent selective
HDAC?2 inhibitors. This study focuses on developing a 3D QSAR model using a modified
CoMSIA approach, in order to better determine inhibitory activity of novel compounds,
while also providing a model to guide further inhibitor design and optimization. The
models were generated using 168 carefully selected inhibitors from the literature, and were
thereafter evaluated and validated through multiple parameters to determine the model
with the best predictivity. The best generated model was then studied to identify important
compound physiochemical properties that significantly affect inhibitory activity against
HDAC?2, and it was found that the presence of large bulky groups at the active site rim,
together with an aromatic ring within the hydrophobic channel, enhance HDAC?2 inhibitory
activity.
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1. Introduction:
Histone Deacetylase Enzymes are a family of intracellular enzymes that play a crucial role
in cell cycle progression and proliferation, while also contributing to other significant
biological functions. HDACs mechanism of action entails Post Translation Modification
(PTM) on a variety of proteins, predominately chromosomal histones, through lysin € side
chain deacetylation, affecting both gene translation and transcription. 18 human HDAC
isoforms have been identified, 11 of which are zinc dependent, simply referred to as
HDACSs, while 7 are NAD" dependent, referred to as Sirtuins. Zinc dependent Histone
Deacetylase Enzymes have been intensively studied for the treatment and management of
multiple diseases such as cancer [1-3]. HDAC2 in particular was recently shown to be a
promising therapeutic target for multiple dangerous malignant, cardiovascular,
neurodegenerative and muscular diseases [4, 5].

1.1. Histone Deacetylase 2 (HDAC?2):
HDAC?2 belongs to Class | of HDAC enzymes, and is found within the nucleus of all
human cells, and plays a role in multiple disease pathologies through various branching
mechanisms due to its high deacetylation potency over histones and other proteins.
HDAC2 was found to be upregulated in various types of cancer such as liver, gastric,
colorectal, bone and lung tumors [4], where it affects tumor prognosis through direct or
indirect activation of specific oncogenes and pro-oncogenesis pathways such as the
apoptosis inhibiting NF-kB pathway [6], or inhibition of tumor suppressor genes and
proteins such as p16™K*/p21WAFYCIPL genes and p53 protein [7, 8]. HDAC2 was also
found to be implicit in neurodegenerative diseases such as Alzheimer’s due to its negative
impact on synapsis elasticity and long-term memory formation [5, 9, 10]. Moreover,
HDAC2 plays a role in cardiac hypertrophy due to glycogen synthase kinase 3b (Gsk3b)
inhibition [11], and Duchenne Muscular Dystrophy (DMD) through indirect inhibition of
follistatin [12].
HDAC?2 active site consists of three main regions, namely the rim at the entrance of the
active site pocket, followed by a hydrophobic channel, and then the catalytic acetate
binding site. Additionally, HDAC?2 active site also contains a region called the foot pocket
situated deep within the pocket adjacent to the acetate binding site [13, 14]. Figure 1
illustrates the aforementioned regions, rim (blue), hydrophobic channel (yellow), acetate
binding site (red), and foot pocket (green).

Figure 1: HDAC2? active site pocket regions
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1.2. HDAC?2 inhibition:
HDAC inhibition has proven to be an effective cancer treatment [15]. However, pan-
HDAC inhibition is accompanied by potentially dangerous side effects such as
cardiovascular and neurotoxicity [10, 16, 17], whereas HDAC2 selective inhibition could
prove to be a better, more potent and less toxic alternative, while also having multiple
therapeutic applications other than cancer due to its role in the aforementioned diseases [4,
5]. Unfortunately, there are no currently approved HDAC?2 selective inhibitors. Thus,
multiple HDAC?2 selective inhibitors are currently being developed and studied through
various molecular modelling approaches, and this study focuses on predicting the potency
of potential HDAC?2 inhibitors through building a 3D field-based QSAR model, in order to
better determine inhibitory activity, and guide novel inhibitor design.

1.3. 3D QSAR:
The goal of 3D-QSAR is to establish the relationship between biological activity and
spatial properties of the studied compounds such as steric, electrostatic, and lipophilic
properties called descriptors. Multiple methods have been developed like MSA, CoMFA
and CoMSIA, the latter being the one used in this study, as it offers distinguishing
advantages benefitting this work [18].
Comparative Molecular Similarity Indices Analysis (or for short CoMSIA) is a ligand-
based, alignment-dependent, and linear 3D-QSAR method, which relies mainly on
calculating five similarity fields: steric, electrostatic, hydrophobic, hydrogen bond
acceptor, and hydrogen bond donor for the aligned molecules, through interactions with an
appropriate probe (charged atom for electrostatic, hydrogen bond donor and acceptor for
the hydrogen bond fields and so on) situated at equally spaced grid points. These
interactions are then used as descriptors which are correlated with biological data
(inhibitory activity) using a Partial Least Square (PLS) approach in order to obtain a QSAR
model, presented graphically as contour maps [19, 20].
The CoMSIA methodology enables ascertaining the importance of specific physiochemical
properties (electrostatic, hydrophobic, hydrogen bonding, etc.) contributing to the activity
model and their 3D spatial configuration relative to the ligand skeleton, while providing
contour maps that are easy to interpret and could be further used to guide ligand
modification through favorable and unfavorable ligand groups correspondence with each
similarity field [18-20].

2. Materials and Methods:
The Schrodinger 2023.1 molecular modelling suite [21-24] was used to carry out this
study.
2.1. Data set preparation:

Data set selection is a crucial step in building a QSAR model, as compounds used to build,
test, and verify the model are the defining factor for its success and applicability. Thus, in
order to build a model that is both predictive and has a large area of applicability,
compounds were selected from previous studies and scientific literature based on the
following criteria:

- All compounds are tested in-vitro using the same method to determine their

experimental HDAC2 inhibitory activity

- Compounds with different structures and similar activities

- Compounds with similar structures and different activities

- Compounds spanning multiple magnitudes of activity

- Highly active compounds as they provide important structural information

journal.tishreen.edu.sy Print ISSN: 2079-309X, Online ISSN: 2663-4287
314



ROORINA HDAC?2 ol e didayiill dladlly 50ll b} D5 QSAR zhgai sk

The selected compounds were drawn in the 2D sketcher of the Maestro interface, and then
prepared using the Ligprep module. The compounds were then separated into three sets:
training, test, and external validation, while ensuring fair distribution of compounds in
each set.

2.2. Compound alignment:
Alignment was performed through molecular docking into a prepared HDAC?2 active site
(PDB: 7KBG) using Glide XP docking protocol, this approach could help provide more
insight into the effect of protein binding site interactions on overall inhibitory activity, and
not solely relying on ligand-based descriptors.
The protein structure of HDAC2 (PDB: 7KBG) was retrieved from the RCSB database
[25-28], and prepared using the protein preparation workflow module. Hydrogen atoms
and missing loops were added. Zero-order bonds were assigned to metals. Missing side
chains were filled. Energy minimization was performed (convergence RMSD threshold
was 0.3A°) using the OPLS4 force field [29], and water molecules were deleted as per
recommendations from the software developer.
The Glide receptor grid that will be used for docking was generated using the appropriate
residues as centre of the generated grid (GLY139, GLY150, PHE151, TYR304, ZN401).
However, it has been shown that the internal cavity (foot pocket region) of HDAC2
undergoes significant structural changes during drug-receptor complex formation with
compounds that can access said region [30, 31]. This change greatly impacts the ability of
compounds to successfully dock in the active site. This will be simulated using the Induced
Fit Docking protocol [32] in the Glide module which simulates residue flexibility by
docking a known HDAC?2 inhibitor 2-thienyl CI1-994 [33]. The resulting complex will be
used to generate the receptor grid.
The Glide XP docking protocol was then used to dock all compounds into the prepared
HDAC?2 active site.

2.3. Building and validating the QSAR models:
The 3D field-based QSAR from the Prime module was used to build the QSAR models
using the aligned compounds, with different numbers of PLS factors, and each generated
model was then evaluated and validated through multiple parameters. The Prime module
uses a modified CoMSIA method for generating the models, and an extended Gaussian
function was selected which uses an aromatic ring similarity field in addition to the
aforementioned five fields. Grid spacing was set to 1 A°, and number of ligands to leave
out for cross validation was set to 1, the remaining parameters were set to default. Tables 1
and 2 present the parameters used for the internal evaluation of the models using the test
set.

Table 1: Parameters for the internal evaluation and validation of QSAR models

Parameters Description Required value
SD Standard deviation of the regression ~0
R? The coefficient of determination ~1
RZCV Cross-validated R? value ~1
2 Average value of R? from a series of models built using .
. R“ scramble S Lowest possible
Training set scrambled activities

Stability of the model predictions to changes in the

Stability . ", ~1
training set composition

F Fisher coefficient Highest possible
P Statistical significance Lowest possible

RMSE Root-mean-square error ~0

T Q? The coefficient of determination ~1

est set - -
Pearson r value for the correlation between the predicted
Pearson-r S ~lor-1
and observed activity
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Furthermore, to ensure good model predictivity, the external validation set of compounds
was used to evaluate model predictability independently from model generation, according
to the parameters set by Tropsha et al.[34-36]. These calculations were carried out using
the Enalos module of KNIME software on the model with best internal validation results.

Table 2: Parameters for the external validation of QSAR models
Parameters Description Required value
The coefficient of

2
R determination >0.6
The coefficient of
R%cvExT determination after cross >0.5
validation
(R* - Ry%)/R? Ratio of conventional
coefficient of correlation
(R? - Ry™?)/IR? and coefficients of <0.1
determination
Absolute difference of
IRo? - Ro’Y coefficients of <0.3
determination
K Slopes of the respective
K’ regression model 0.85<__<L.15

The model with the best accommodating parameters will be chosen as the best model.

3. Results and Discussion:

3.1. Data set preparation:
168 compounds were selected from appropriate studies and scientific literature [37-52]
according to the previously mentioned parameters. The chosen compounds were split into
training set (85 compounds) used to build the models, test set (34 compounds) used for
internal evaluation, and validation set (49 compounds) used for external validation and had
no part in model building. Tables 3-5 present the structure of the chosen compounds, with
their respective inhibitory activity calculated using the formula:

Activity = pIC50 = —log(1C50)

Compounds had an 1Csg ranging from 3.5 nM to 100 uM.

3.1. Compound alignment:
Aligned compounds (green skeleton) within HDAC2 active site are presented in figure 2.

Figure 2: Aligned compounds within HDAC?2 active site
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Table 3: Chemical structures of the training set compounds
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Table 4: Chemical structures of test set compounds
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Table 5: Chemical structures of validation set compounds
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3.1. Building and validating the QSAR models:
Three QSAR models were built using different numbers of PLS factors, table 6 presents
the internal evaluation and validation parameters of the best generated models using one,

two, and three PLS factors.

Table 6: Internal evaluation and validation parameters of the generated models

2
# Factors  SD R? R*CV R Stability
scramble
1 0.4365 0.8053 0.7144 0.162 0.97
2 0.3305 0.8897 0.8345  0.3955 0.983
3 0.2928 09145 0.8539  0.5169 0.983

=

P RMSE @Q°

343.2  3.16e-31 0.36 0.9055
330.8 = 5.53e-40 0.38 0.8949
288.8  3.87e-43 0.39 0.8933

Pearson-r

0.9548
0.9481
0.9472

All models exhibited good parameters overall, with both high stability and test set
experimental vs predicted activity correlation (Q?). However, models 2 and 3 showed
better cross validation coefficients (R* CV) with the leave-one-out method, and since both
models exhibited similar test set results and model 2 showed lower probability of fitting
random data (R? scramble), model 2 was chosen as the best model due to having a lower
chance of over-fitting. Further analysis on the external validation set using the Tropsha et
al. parameters (figure 3) showed that model 2 shows good predictivity. Figure 4 represents
experimental vs predicted activity plot for all three sets of compounds for model 2.

=0.085

=0.057

Criterion Assessment Result
RA2 0.6 PASS R™2=10.719
Revext™2 > 0.5 PASS Rovext~2 =0.73
(RAZRO)RA2 <01 PASS (R™2R042)R~2
RA2ZR04YRA2 < 0.1 PASS RAZR042)RA2 = 0,006
abs(RO~2R'042) < 0.1 PASS abs(RO~2R'042)
0.85<k<1.15 PASS k= 1.003
0.85<k < 115 PASS k' =0.991

Model Predictive

Figure 3: External validation of model 2 using Tropsha et al. parameters
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Figure 4: Experimental vs predicted activity plot for model 2
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Tables 7-9 compare experimental vs predicted activity of all compounds.
Table 7: experimental vs predicted activity of training set compounds
Predicte

Activity

8.444
8.357
8.337
8.319
8.276
8.222
8.046
7.674
7.587
7.319
7.208
7.180
7.086
7.071
6.983
6.959
6.955

Predicted

7.993
7.971
8.403
8.319
7.949
8.229
8.086
7.206
7.967
7.118
7.343
6.870
6.770
6.811
6.323
6.729
7.387

#

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Activity

6.936
6.886
6.824
6.804
6.796
6.747
6.745
6.717
6.699
6.606
6.602
6.569
6.553
6.553
6.538
6.529
6.507

Predicte
d

6.751
6.727
6.752
6.881
6.613
6.896
6.399
6.658
6.475
6.348
6.723
6.609
6.781
6.664
6.559
5.979
6.752

#

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Activity
6.503
6.495
6.471
6.469
6.409
6.398
6.387
6.372
6.276
6.260
6.237
6.215
6.167
6.054
6.046
6.037
6.036

Predicte
d

7.130
6.357
6.618
6.660
5.967
6.690
6.356
6.732
6.654
6.211
6.841
6.646
5.461
6.559
5.933
5.571
5.672

#

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

As previously mentioned, this method ascertains which physiochemical properties are
more relevant to predicted overall compound activity, this can be shown through table 10
as percentage of contribution, where it is apparent that steric similarity field had the
highest contribution (37.6%), meaning that the shape and spatial positioning of the
compound largely contribute to its activity, which is fairly common amongst drugs.
Hydrophobic, hydrogen bond donor and acceptor, and aromatic ring fields had relatively
similar contributions (11.3%-16.5%), while the electrostatic field showed the lowest

contribution to overall activity (6.8%).

Activity
8.456
8.398
8.377
8.301
8.268
7.883
7.000

Predicted

8.030
8.017
8.291
7.856
8.074
7.815
6.272

#

8
9
10
11
12
13
14

Table 8: experimental vs predicted activity of test set compounds

Activity

6.917
6.745
6.638
6.620
6.585
6.548
6.538

Predicted

7.081
6.737
6.476
6.385
6.931
6.991
6.689

#

15
16
17
18
19
20
21

Activity

6.495
6.441
6.301
6.197
6.117
6.066
6.046

Predicted

6.628
6.039
6.271
6.311
6.311
5.635
5.978

#

22
23
24
25
26
27
28

Predicte

Activity d # Activity d
6.000 6.143 69 5.334 5.136
5.932 5.991 70 5.301 5.391
5.915 5960 71 5.285 5.839
5.903 5.859 72 5.268 4.589
5.854 5.837 73 5.187 5.631
5.854 5.373 74 5.143 5.343
5.845 6.469 75 5.135 5.536
5.823 5.738 76 5.114 5.615
5.801 5.049 77 5.092 5.077
5.745 5.545 78 5.070 5.663
5.742 5924 79 5.000 5.739
5.569 5.259 80 5.000 5.255
5.556 5934 81 4.620 5.291
5.542 5.951 82 4.398 5.259
5.509 5.460 @ 83 4.398 4.330
5.409 5.750 | 84 4161 4.236
5.409 5.563 85 4.004 4.194
Activity = Predicted = # = Activity @ Predicted
5979 5471 29 5.000 5.344
5959 6.203 30 5.000 5.318
5569 5.257 31 4.886 5.049
5377 5970 32 4538 4.185
5.203 5840 33 4.398 4.715
5.180 5.758 34 4.237 4.600
5.068 4.986
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Activity
8.409
8.377
7.500
7.252
7.108
7.027
6.955
6.824
6.745
10 6.638

© 00 N O ol & W N PP #®

#

Predicted

7.712
8.135
7.793
6.565
6.930
6.673
6.652
6.597
6.594
5.956

Table 9: experimental vs predicted activity of validation set compounds

#
11

12
13
14
15
16
17
18
19
20

Activity
6.584
6.444
6.408
6.367
6.367
6.357
6.356
6.310
6.301
6.292

Predicted

5.949
6.358
5.998
6.244
6.589
6.702
6.980
6.049
6.083
5.754

#
21

22
23
24
25
26
27
28
29
30

Activity
6.269
6.252
6.137
6.092
6.046
6.041
6.000
5.979
5.886
5.807

Predicted

6.856
6.476
6.195
5.363
5.162
6.773
6.317
5.068
5.565
5.157

#
31

32
33
34
35
36
37
38
39
40

Activity
5.736
5.705
5.699
5.590
5.569
5.569
5.541
5.432
5.301
5.285

Predicted

6.574
5.933
5.866
5.833
4.795
5.476
6.105
5.190
5.421
5.937

#
41

42
43
44
45
46
47
48
49

Table 10: Similarity field contributions to overall predicted activity of model 2

Gaussian
steric

Factors

1
2
3

35.3
37.6
36.7

Gaussian
electrostatic hydrophobic

6.9
6.8
7

17.4
16.5
16.8

Gaussian
hbond
acceptor

15.3
14.6
14.6

Gaussian

Gaussian
hbond
donor

11.8
11.3
12

Gaussian
aromatic
ring

Activity
5.268
5.237
5.201
5.089
4.886
4.538
4.398
4.328
4.161

13
13

12.6

Figure 5: QSAR model‘ 2 field contours; steric (A), electrostatic (B), hydrophobic (C), hydrogen bond
acceptor (D), hydrogen bond donor (E), aromatic ring (F)

Model 2 field contours are shown in figure 5, overlayed on a training set compound (black
skeleton) within the active site, and contour information are presented in table 11. A
positive contour means that the presence of the corresponding physiochemical group or
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6.033
5.332
5.553
4.835
5.353
4.854
4.960
4.725
4.480
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function in this position is favorable to increase activity, while a negative contour means
that its presence is unfavorable and could lead to lower activity, except for electrostatic
where positive and negative are indicative of the corresponding charge.

Table 11: QSAR model 2 contours description

Similarity field contours Positive Negative
Gaussian Steric Green Yellow
Gaussian Electrostatic Blue Red
Gaussian Hydrophobic Yellow White
Gaussian Hbond Acceptor Red Magenta
Gaussian Hbond Donor Purple Cyan
Gaussian Aromatic Ring Orange Gray

By analyzing the previous contours, it is apparent that according to model 2 the inhibitory
activity increases significantly by the presence of bulky groups at the rim (entrance) of the
active site, and also increases with the presence of hydrophobic groups within the
hydrophobic channel area, which is somewhat expected as this channel houses the
hydrophobic lysine side chain throughout the deacetylation process [2]. Additionally, the
presence of an aromatic ring in the hydrophobic channel, and a hydrogen bond acceptor
and donor deep within the foot pocket also serve to increase activity. On the other hand,
the presence of bulky or aromatic groups in the foot pocket, hydrogen bond acceptors in
the hydrophobic channel, or hydrogen bond donors in the acetate binding site, all diminish
activity. These findings are in accordance with previous studies on Class | HDACs [53,
54]. Looking back at the compounds used to generate and validate the model, we find that
the more active compounds all have large bulky groups that would be positioned at the rim
of the active site pocket, while less active compounds are generally smaller and thus more
confined to the hydrophobic channel. Figure 6A illustrates a comparison between two
compounds with similar scaffolds, however they differ in their interaction with the rim,
where the more active compound (green skeleton) has a large group positioned within this
region, while the smaller less potent compound (purple skeleton) lacks such a group, and
this could explain the large difference in experimental activity (ICsp = 21 nM vs 4600 nM
respectively). Hydroxamic acid compounds benefit from the fact that they don’t occupy the
foot pocket and thus are better positioned to interact with the rim with their bulky groups,
whereas benzamides are situated deeper within the active site and occupy the foot pocket
with an aromatic ring or a larger group, and thus have to be larger themselves (higher
molecular weight) in order to interact with the rim in a similar manner. Figure 6B
illustrates this points by comparing the positioning of both a hydroxamic acid compound
(yellow skeleton) and a benzamide (green skeleton) with similar experimental activities
(ICs0 = 25.9 nM vs 21 nM respectively) within the HDAC?2 active site.
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Figure 6: A; comparison between two benzamide compounds with different rim groups, B; comparison
between hydroxamic acid compound and benzamide

Another important factor is the presence of a hydrophobic aromatic ring within the
hydrophobic channel as predicted by both the hydrophobic and aromatic ring similarity
fields of the model. Figure 7 illustrates this by comparing two benzamide compounds from
a previous study by Li et al. [40] with the same chemical structure, bar the linker being a
phenyl ring in the first one (cyan skeleton, 1Csy = 157 nM), and an alkyl chain in the
second (orange skeleton, 1Cso = 296 nM).

/ LN [ s
£ WY

Figure 7: comparison between two benzamide co/rhbounds with different linker groups

Going back to figure 6B, the hydroxamic acid compound contains an alkyl linker as

opposed to the benzamide with the phenyl linker, which should mean higher potency for

the benzamide compound, however, this disparity only affects experimental activity ever

so slightly, which further shows the importance of the steric similarity field over other

fields, as both compounds have large bulky groups similarly positioned at the active site

rim, and thus aren’t significantly affected with changes in other similarity field

interactions.

These findings could help design novel potent HDAC?2 inhibitors by using large bulky

groups that can be positioned within the rim of the active site, together with a hydrophobic

aromatic ring as the linker that resides within the hydrophobic channel.
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4. Conclusion:

A 3D-QSAR model was developed for predicting the activity of HDAC2 inhibitors using a
modified CoMSIA approach. The model was generated using a training set of 85
compounds, and validated using a test set of 34 compounds, and further using an
independent external validation set of 49 compounds, all selected from relevant studies and
literature. The sets encompassed a wide array of chemical structures, with different
experimental inhibitory activities spanning multiple orders of magnitude. The generated
model conformed to all required parameters and exhibited good predictivity and stability.
The model predicts that the presence of a large bulky group at the rim of the active site, as
well as a hydrophobic aromatic ring in the hydrophobic channel significantly improve
inhibitory activity against HDAC2. These findings could prove useful in designing novel
potent HDAC?2 inhibitors.
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